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i, INTRODUCTION

The extreme spatial and temporal variability of surface processes makes soil properties extremely variable
and therefore, difficult to measure, Since soil and ecosystem processes occur at different scales, it is necessary to
work at sufficiently large spatial resolution and coverage for generalizations to be made. Organic matter is a soil
property closely related to soil quality, not only as an indicator of soil erosion and degradation, but also as a
regulating factor of processes such as nutrient availability, water holding capacity, and permeability. Because values
of organic content are highly variable and react very quickly to external changes (Gerrard, 1992), decomposition
rates show high spatial variability, The spatial distribution of organic matter content can be an indicator of the rate
of decomposition and other processes happening on the soil surface, such as differences in deposition and erosion
rates or microclimate factors.

Imaging spectrometry offers a potential way to map certain soil properties that are relevant to surficial
processes at the landscape scale. In the last few years the analysis of hyperspectral data and image processing
techniques have improved to the point that they offer the potential for direct analysis of soil properties. Several
multispectral sensors have already been used for discrimination between soils (Lewis et al, 1975; Agbu et al, 1990;
Coleman et al, 1993). Specifically, there are several studies where organic matter has been analyzed in terms of its
reflectance properties (Stoner and Baumgardner, 1981; Henderson et al, 1989). Hyperspectral data, specifically
Advanced Visible Infrared Imaging Spectrometer (AVIRIS) data has been shown to be useful for improved

) discrimination of minerals (Clark et al, 1990; Kruse et al, 1990). Also, several other studies have deah wi[h soil
identification and discrimination directly or indirectly using AVIRIS data (Smith et al, 1990; Roberts et al, 1993;
Palacios-Orueta and Ustin, 1996, 1998b).

A significant problem for soil analysis is the presence of vegetation in most pixels. Because the signatures
of soils and vegetation are so different, the lesser variability cyntained within the soil component is not significant
enough for soil discrimination when vegetation is also present in the pixel. HFBA (Hierarchical Foreground and
Background) (Pinz6n et al, 1988) is a new steerable analytic technique where the Foreground and Background
Analysis (FBA) equation (Smith et al, 1994) is applied at several levels in a hierarchical way, thus, the variability
contained in the data set is confined at each step, making it possible to extract subtle absorption features. For this
model FBA was modified to project the spectra into a property-specific axis of continuous variation. To examine the
application of this method to extract and improve detection of soil properties using an imaging spectrometer, we
applied it to map the spatial distribution of organic matter content from samples in two watersheds in the Santa
Monica Mountains Recreation Area. In earlier work, Palacios-Orueta and Ustin (1988a) found that soils from each
valley could be discriminated based on organic matter and iron content and that these could be spectrally estimated
with reasonable accuracy in soil samples. The purpose of this work was to test the performance of HFBA
(Hierarchical Foreground and Background Analysis) applied to AVIRIS data for the discrimination of these soils and
soil properties.

2, METHODS AND MATERIALS

2.1 Study Sites, Soils, and Geologic Materials

The soils are from two souih-to-rmrth trending watersheds, La Jolla Valley and Scrrarw Valley, within the
Point Mugu S(atc Park in [hc wcs[ern (coasml) region of [hc Santa Monica Mountains Na[ional Rcwrcation Area,
bctwccn Vcnlura itnd Los Angeles Coumics. California. The climalc is typically Mulilm-r:mcan with dry summers

id mild winicrs, In Ialc 1993 a wild lirc removed MOSIof [hc wgctation in both val]cys milking it possible 10



otmcrvc soils with minimal vegetation cover. Further ttcscription of this iirca is found in Palacios-Orueta ( 1997)or
Palacios-Oructa and Ustin ( 1988a). La Jolla Valley soils arc forrmxl from wcathcrcd sandstone and shale while
Serrano Valley soils arc derived from basic igneous rock. The soil moisture regime in both valleys is xeric and the
soil tcmpemture regime is considered thermic. The sleep tcrmin and the distance to the ocean create different
microsite environments which consequently result in high soil variability (Edwards et al, 1970).

2,2 Field Soil Data Collection

Seventy-four soil sample composites were collected from the valleys. Samples were selected to represent
the range of aspect, slope, elevation and parent materials within the area, although this goal could not be completely
achieved due to the roughness of the terrahr. The locations of the soil samples were identified using a Global
Positioning System unit (Trimble Navigation PROXL) with +/- 1 meter accuracy after differential correction.

2.3 Physico-chemical laboratory analyses

The soil samples were analyzed by the DANR (Division of Agriculture and Natural Resources) Analytical
Laboratory at U,C. Davis for organic matter, iron content, and texture. Organic matter content was significantly
higher in La Jolla Valley although variances were similar in both valleys (Palacios-Orueta and Ustin, 1988a). The
soil sample preparation for spectrometry followed the standardized procedure from Henderson et al (1992). Further
information about this procedure, spectroscopic technique and soil characteristics can be found in Palacios-Orueta
(1997).

2,4 Spectroscopic Analysis

The spectral data set includes laboratory reflectance spectra (400-2500 nm) measured in a Varian Cary SE
spectrophotometer, and two AVIRIS scenes acquired April 11,1994.

2.5 Geographic Information Systems Database

The geographic information was organized in a GIS (Arcflnfo) database. The AVIRIS scenes were
georeferenced using control points and combined in the database with ancillary information composed of a Digital
Elevation Model, vegetation map, and the digitized geologic map. The organic matter content was also included in
the database. The AVIRIS imagery used for this study was acquired approximately six months after the wildfire and
at the end of the winter precipitation period, Two adjacent image scenes were used for this analysis. Apparent
surface reflectance retrieval used a radiative-transfer based atmospheric model (MODTRAN 2) that accounts for
spatial variation of the atmospheric conditions (Green et al, 1993).

3. METHODOLOGY

HFBA was developed by Pinz6n et al (1995) as an improvement of FBA (Smith et al, 1994). The approach
taken (Fig. 1) was to narrow the variance by stratification of the soil population into small but reliable ranges of soil
variability that can be consistently detected. This process is done by first discriminating the soils between the
valleys, and second, by investigating the variability related to organic matter content within each group. A smaller
range of spectral variability is found in the second level. These vectors are calculated using a training set derived
from laboratory data and Singular Value Decomposition (SVD) is used to solve the HFBA equation at each level in
the analysis. The performance was tested with the whole laboratory spectral data set and then applied to the AVIRIS
image. Each pixel was classified as being of the soil type of one of the two valleys or into a class level of organic
matter content. The analyses were done in Matlab ( 1994).

4. RESULTS AND DISCUSSION

4.1 First Level of Soil Classification: Vector Training

Although other sources ot’ vtiriability bclwccn the soils ot these two Iocalions arc Iikcly, the specwal
v:wiahility duc 10 [hc comhin:ltion of organic miiltcr is summarized in [his step. HFBA uws :1 supervised



clitssifi~is[iort schcmc where each valley was rcprcscntcd by a scale of wslucs in which Scrrancr type soils ranged from
O m 7 and La Jolla frnm 7 to 14, Then, spectra in the training SC(were projcclcd by the HFBA vccmr [o the ccntcr of
each class. Figure 2 shows lhc mean spectra for each valley and the HFBA vector that yielded the best
discrimination bctwccn valleys, It can be observed that the two spectral areas most important for discrimination
between the valleys were near 1000 nm and 2200 nm. Ai[hough the greatest weights were g’iven to the band at 2200
nm, an area between 700 and 1400 nm isndcentered on ]000 nm was consistently negatively weighted. This means

that a wide area around 1000 nm is important in the discrimination while only a few bands around 2200 nm are
significant. Palacios-Orueta and Ustin (1988a) found that reflectance around 1000 nm was not only related to
organic matter content but also iron, thus low reflectance in this band by itself is not sufficient to determine the
organic matter content. From the mean spectra, it is observed that the reflectance at 1000 nm is significantly
different between valleys. The absorption bands centered at 2200 and 2300 nm are most likely due to the presence
of OH-Al and Mg-OH in dioctahedral and trioctahedral clays respectively (Hunt and Salisbury, 1970). The
differences in geologic parent materials could produce this effect. These results combined with the analysis of error
(Table 1) support the idea that although there must be other sources of variability, organic matter and iron contents
play a critical role in the spectral discrimination between valleys.

4.2 Second Level: Organic Matter Content 1

At the second HFBA level, the analysis focused on extracting information related the biogeochemistry. In
order to do this, two analysis tools were used: the quantization of the chemical data into ranges and the selection of
the soil samples for the training set. In each group defined at the first level, two new vectors were trained to classify
spectral samples for organic matter, Vectors a and b (Fig. 3 a,b) were trained with the soils classified either as
Serrano or La Jolla types. Both HFBA vectors show a concave shape around the 700 nm region although in La Jolla
the minimum value is slightly shifted towards 800 nm. In these soils the weights increase until reaching the highest
value at 1400 nm. The band at 2200 nm is highly weighted in Serrano, while in La Jolla the band centered at 2300
nm has highly positive weights, In La Jolla, the vector is smoother over a wider range of wavelengths, possibly due
to the higher organic matter and lower iron contents in this valley, Organic matter characteristics are stronger and
their features are more clearly observed. Table 2 shows the quantization levels for organic matter content, and the

i number of samples in the whole data set and in the training set. Figure 4 shows the distributions of the measured and’
the predicted values for both valleys. The continuous line represents the predicted values and the dashed line
represents the measured data. The r2 from the regression analysis is 0.72, and only five samples were outside of one
standard deviation, The distributions of the predicted and the measured data follow similar patterns assigning more
samples to the centrally placed values.

4.3 Classification between valleys

The first vector was trained to assign each pixel a classification value that will locate it in one of the two
soil types. Since many pixels are not pure soils they are classified outside the range of the original classes (O-14).
Although the area under study was recently burned in a major wildfire there was a considerable amount of
revegetation in some areas, mainly in the moister valley bottoms. Because the image was acquired following the
wildfire and winter storms we expected the amount of dry vegetation to be low, thus, decreasing the possibility of
confusion with soil,

There are also some terrestrial areas in the image that were not affected by the wildfire and remained
vegetation covered. Masking the vegetation using an NDVI threshold is an arbitrary decision and pixels with small
but undetermined amounts of vegetation still remain. Our interest lies in discriminating soil properties in pixels over
a range of partial vegetation cover. Since the vectors are trained with pure soils, we expect that pixels having some
vegetation will still show soil characteristics while pixels with higher levels of vegetation cover will be out of the
range of the predicted soil property values. This allows an a posferiori decision about vegetation cover that is
derived from the soil information rather than an u priori vegetation based decision. The NDV1 (Fig. 9a) is shown as
a reference and used to compare the spatial distribution of the vcgcmtion derived from the HFBA but it was not used
directly to mask vegetation in the analysis. Our results showed that the negative wslucs projected by the
~l;~ssificiltionvector were pixels with high NDVI (>0.5), providing smnc confirmation of lhc nwlhociology.

A hislogrom of lhc rcsulls (Fig. 5) shuws thal the AVIRIS distribution hmns a kmg t:lil with only a I’CW



pixels having values higher than 21, Nearly all pixels with values higher [him 14 were Ioca[cd in the ocean, thcrcforc
wc used this criteria 10 remove (hem from further consideration in the soil analysis. All pixels with values less than O
were classified as vegetation, The remaining “potential soil” pixels in the image were classified iI[ several levels.

Pixels with values between O and 7 were assigned to Scrrano type soil class, i.e.. have the physiochemical properties
of Scrrano Valley soils, and pixels with values between 7 and 11 have the physicochcmical characteristics of soils
from La Jolla Valley soil type. Pixels with values between 11 and 14 are located in the beach areas, and although
they have soil properties, due to the high albedo of the sand they are projected in the high extreme of the soil range.
The Serrano soil type is assigned a light gray and soils classified as La Jolla are assigned dark gray in Figure 9b.
Comparing these results with the NDVI shows that areas with NDVI >0.5 (black) follow the same spatial pattern as
the pixels that were not classified (white) in Figure 9b. The image the La Jolla soil type pixels are clustered in
patches, and the pixels classified as Senano soil type are distributed more continuously over most of the image.

The first level of classification allowed us to select pixels classified as Serrano or La Jolla soil types. Only
pixels with enough spectrally expressed soil to fall within the laboratory data range were analyzed in the second step.
Thus the variability due to soils alone is identified and this variability is divided into that produced by La Jolla and
Serrano soil types, This hierarchy optimizes the application of the organic matter vector.

3.5 Organic Matter Content Determination

Organic matterwas estimated applying the vectors trainedwith laboratorydata. Vector a was used to
predict organic mattercontent in pixels classified as Serranotype soils in the first level classification and Vector b
was used for pixels classified as La Jolla type soils (Fig. 6). Although the predicted organic matter values range
from -15 to 10%, the range most pixels are found within the 1- 6%, the samerangeas laboratorydata, Pixels
where soil is not the primary component show projected values outside this range. The ocean pixels have extreme
high projected values of organic matter content and pixels having high NDV1(> 0.5) are projected to low or negative
valuesof organic matter content, thus makingit straightforwardto remove them from consideration. The distribution
of the AVIRIS soil organic matter for the two soil types (Fig. 7) followed the same trend as the laboratory data; the
range is the same although the distribution is different. Figure 9Cshows the results of the analysis for AVIRIS pixels

i having a high soil component (i.e. organic matter between 0- 6’%).The light gray indicateslow and dark gray
indicateshigh organic matter, white indicatespixels out of range in the first classificationlevel or had negative
organic matter content values. Soils with high organic matter content are not uniquely associated with La Jolla
Valley and it is observed that the pixels mapped as La Jolla type soils (Figure 9b) show high organic matter content
in Figure 9C (e,g,, northeast area). This pattern agrees with our laboratory soils data. The spatial distribution of
organic matter was related to the aspect (Fig. 8). North and east facing aspects are generally cooler and more humid
and characteristically accumulate higher levels of organic matter. It can be seen that high values are predominant on
north facing aspects while lower values are predominant on south facing slopes. AVIRIS is not simply mapping soils
in separate valleys but the distribution of organic matter as a continuous variable. The spatial variation in organic
matter is probably related to the steep terrain and aspect. This property is not unique to the respective valley and
because variability within the valleys is high it is representativeof the larger region. Palacios-Orueta and Ustin
( 1998b) found spatial variability in iron content was independent of the organic matter content but the variation in
the valleys was sufficient to map the larger region.

4. CONCLUSIONS

HFBA was found to be a suitable method for soil analysis to determine relative changes in organic matter
content because it is sequentially structuredso that soil propertiescan be quan[ized into different ranges of variance.
There are a combination of features thatmakes this spectral model work more efficiently than standard classification
methods:

1. It is a mixture model therefore it can use continuous data over the whole spectrum,

2, It is steerable model, maximizing variability between classes and minimizing variability wi[hin CIMSCS,
optimizing the amount of information extracted.

3. . As a supervised classification algorithm, it can be focused on spccilic soil properties.

4, The Singular Value Dccomposi(ion equation cflicicntly discrimirmws hclwccn forcgrouml soil
properties and background environmental conditions.



5. The hierarchy rcduccs variability al each slcp allowing suhllc absorption fca~urcs to bc cxwacwd.

The results obtained when training ihc vectors with the laboratory data showed that the organization of the
systcm and the singular value decomposition transformation work effectively in predicting organic matter from
spectral data. Ahhough the classified soils were not uniquely associated with either valley, the predictions of organic
matter contemt from the image agreed with the soil characteristics from the field sampling locations. This
methodology is based on a hierarchical analysis, which implies that variability is reduced at several steps, each time
becoming more specific. The use of HFBA provides a mechanism to efficiently reduce the number of field
measurements, or to use a vector developed from an area having similar soil variability, HFBA would be very useful
for identifying changes in soil properties in a temporal framework. To understand landscape soil processes more

completely,the data could be further analyzed in a geographic context, e.g., using a relational GIS database.
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Table 1. Table of classification errors after first level classification step from spectral analysis of soil samples,

Number of soil samples that belong to:

) La Jolla Serrano To~l
Number of La Jolla 34 1 35
soil samples Intermediate 5 2 7
classified in: Serrano 3 29 32

Total 42 32 74

Table 2. Quantization levels (Rl -R4) for ranges of soil organic matter content and number of samples in the training
set and in the whole laboratory soil sample data set.

Organic Matter (%)
La Jolla Valley Serrano Valley

RI R2 R3 R4 RI R2 R3 R4T
Range Center 0.98 2.33 3.68 5.03 1,1 2.04 2.99 3.93
Training Set 3 6 3 3 2 8 1 2

Complete Data Set 4 15 13 10 7 13 7 5
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Figure 6. Predicted organic matter content distribution from AVIRIS data.
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